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Synopsis 

A general method for determining the dynamic mechanical properties of a material is pre- 
sented. It involves Fourier transforms of the stress and strain responses of a material subject to 
arbitrary deformation. As an example, uniaxial pulse-strain deformations were used to calculate 
the dynamic properties of a cured epoxy. A comparison of the properties calculated from uniaxial 
sinusoidal .deformations and those obtained by Fourier transform analysis of the uniaxial 
pulse-strain indicate excellent agreement over a wide range in mechanical behavior. These results 
suggest that dynamic mechanical properties may be obtained when deformations other than that 
of a sine wave are used. 

INTRODUCTION 

Dynamic mechanical methods have been widely used to characterize the 
properties of polymers. The determination of the storage modulus (E‘ ) ,  loss 
modulus ( E ” ) ,  or equivalently, the complex modulus ( E * )  and tan6 can 
provide information on the glass transition temperature, (T,) and secondary 
molecular relaxations. 

Traditional dynamic mechanical methods involve determining the steady- 
state response of a material to a “clean” and continuous sinusoidal stress or 
strain disturbance. The term clean implies that there are no sine waves of 
other frequencies. The properties are determined by measuring the ratio of 
the amplitudes and the phase lag of the input and output sinusoidal signals. 
While these measurements are valuable, it  would be convenient if one could 
generate these data using other disturbances. 

In this article, we will demonstrate how dynamic mechanical data can be 
determined by evaluating the Fourier transforms of the stress and deforma- 
tion responses of a material subject to arbitrary deformation. In order to 
verify the validity of our approach, a cured epoxy sample was subjected to 
dynamic deformation and uniaxial pulse-strain deformation. The Fourier 
transform-based dynamic properties were compared with those obtained using 
traditional methods. 

THEORY 

Before proceeding with the general methodology for determining dynamic 
mechanical properties using Fourier transforms, it is useful to include the 
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derivation of some established results. The relationship between the storage 
( E ’ ) ,  loss ( E ” )  and complex ( E * )  moduli for a linear viscoelastic material are 
outlined below. 

Equation (1) is a generalized linear viscoelastic constitutive equation where 
the tensile relaxation modulus E( t )  contains both time-dependent and time- 
independent contributions.’ 

a€ 
0 r 

u ( t )  = J t E ( t  - r)a dr 

where 

u( t )  = str‘ks response 

c( t )  = strain history 

E (  t )  = tensile relaxation modulus, where E(  t = 0 0 )  = Eeq 

Eeq = equilibrium tensile modulus 

t = time 

r = time parameter 

The dynamic mechanical properties can be calculated from the mechanical 
response of a material to sinusoidal deformation as follows. Substituting the 
harmonic strain input given in Eq. (2) into Eq. (1) yields Eq. (3) or (4): 

c ( r )  = c,sinw (2) 

or 

u( t )  = r,wL‘E( r)cos( w t  - o r )  dr (4) 

Since cos(ot - w r )  = cos w t  cos w r  + sin w t  sin w r  i t  is possible to simplify 
Eq. (4): 

u ( t ) / e ,  = sinwt (5) 

At conditions of steady state ( t  = ac), Eq. (5) can be simplified as follows: 

u( t ) / c o  = E’( w)sin at + E”( w)cos ot (6) 

where 

E”(  0) = w i W E (  r)cos w r d r  (8 )  
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Note how the determination of the dynamic mechanical properties assumes 
a single-frequency harmonic input and conditions of steady state. In the 
discussion on the general methodology which follows, these limitations are not 
required. 

Alternatively, the Fourier transform of Eq. (1) can be given by Eq. (9), 
where it is assumed that the material starts from rest: 

where 

~ ( w )  = /mr( t )e - 'a tc i t  0 (11) 

Note that Eqs. (10) and (11) are given by definition of the Fourier transform.2 
The angular frequency w can be related to the linear frequency f by Eq. (12): 

w = 2nf (12) 

Using Euler's formula, Eq. (9) can be rearranged and simplified as follows: 
m 

6/C = i w l  E(  t)e-cat dt = iw/mE(  t)cos wtdt - i2w E(  t)sin wtdt (13) 
0 

Substituting Eqs. (7) and (8) into Eq. (14) yields the desired result: 

6/C = i w B  = E'( w )  + iE"( w )  = E *( w )  (15) 

Some of the mathematics involved in the calculation of the dynamic: 
mechanical properties from arbitrary deformation have already been de-. 
~ r i b e d . ~  A summary and the specifics regarding the numerical aspects of the 
method follow. Applying Euler's formula to the Fourier transforms of the 
stress and strain functions in Eq. (15), yields Eqs. (16) and (17): 

&(a) = a, - iu, (162 

C ( w )  = r ,  - i r ,  

where 
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Equations (18)-(21) can be combined to yield the dynamic mechanical proper- 
ties as follows: 

IE*(w)l = [ E ’ 2  + Ef’2]1’2 (24) 

tan8 = E“/E‘  (25) 

There are, however, several subtleties which should be noted in order to 
avoid erroneous results. Accordingly, care should be taken when choosing the 
frequencies at which the dynamic properties are to be calculated. First, the 
data collection rate of the stress and strain responses must be considered. In 
order to adequately calculate the dynamic mechanical properties a t  a given 
frequency, a sufficient number of data points should be collected so that a sine 
wave of that particular frequency can be adequately described. Clearly, higher 
collection rates will result in more accurate properties. Conversely, for a given 
data collection rate, the properties calculated at  the lowest frequency will be 
the most accurate. As a general rule, the collection frequency should be ten 
times larger than the highest frequency to be calculated. Should high frequency 
dynamic properties be desired and high data collection rates are not feasible, 
interpolation of the collected data is recommended. 

The second subtlety concerns the numerical methods used to calculate the 
mechanical properties. Consider Eqs. (20) and (21) and a rapidly applied 
uniaxial pulse-strain deformation of magnitude co. Mathematically this is 
equivalent to multiplying cos w t  and sin w t  by the constant co. For pulse 
durations which are integer multiples of the desired frequency fc, the values 
for c c ( w )  and c s ( w )  will be equal to zero. This results in the calculation of 
erroneous dynamic properties. In order to maximize the values of ec(u) and 
cs( w ) ,  the desired frequency or pulse duration should be chosen so as to result 
in an noninteger number of sine or cosine waves. Equation (26) states the 
criterion that should be employed when using uniaxial pulse-strain defonna- 
tions. In order to obtain the highest degree of accuracy, one should choose 
parameters such that r = 0.5. While the choice of r = 0.5 is not fixed, the 
accuracy that one obtains decreases as r decreases. 

where 

p = pulse duration [s] 

fc = desired frequency of calculated properties [ Hz] 

n = integer 

r = fractional part of a sine wave (0 < r < 1) 
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In general, for a deformation of arbitrary shape, the intergral of the product 
of c ( t )  and sin w t  or cos w t  will not be zero and Eq. (26) can be disregarded. 
For the experiments described below, which use uniaxial pulse-strain deforma- 
tions, these considerations have been taken into account. The choice of the 
frequencies a t  which the dynamic properties are calculated and the pulse 
duration employed result in r = 0.4. 

For deformations which result in r c ( o )  and c s ( w )  equal to zero, the dynamic 
mechanical properties of a material can still be recovered. The method 
involves the ratio of time-weighted moments of the stress and strain histories 
as described below. Differentiation of Eq. (9) with respect to w yields: 

a6 aB I a t  
_ -  -i&+ i w t -  + iwE- aw aw aw 

Since E" = 0, the first and second terms of the right-hand side equal zero. This 
simplifies Eq. (27) to Eq. (28): 

a6 - a t  
aa aw 
_ -  - ioE- 

It can be shown that expressions for a 6 / a w  and a t / a w  are given by Eqs. (29) 
and (30): 

Substitution of Eqs. (29) and (30) into Eq. (28) yields the desired result: 

Hence, the dynamic mechanical properties can be calculated by evaluating 
the ratio of the time-weighted moments of the stress and strain transforms. 
For those deformation histories whose time-weighted moment of strain equals 
zero this method can be further generalized to yield the desired results. 
Repeated differentiation of Eq. (9) with respect to w results in successively 
higher moments of stress and strain. Differentiation is continued until the 
denominator of Eq. (31) becomes nonzero. At  that point the dynamic proper- 
ties can be determined. It should be noted, however, that since these calcula- 
tions utilize higher order moments of stress and strain, the resulting proper- 
ties calculated from such information are subject to more inaccuracy. 

Finally, with regard to the path of deformation, it is best to use a 
displacement which returns to its predeformation level. Under these condi- 
tions, the assumption of linear viscoelasticity requires the stress to return to 
zero, and ensures that the intergrals used in the above calculations are 
defined. Similarly, it should be noted that by virtue of the assumption of 
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linear viscoelasticity, if i' equals zero then a" must also equal zero. For 
nonlinear viscoelastic materials this is not necessarily true. Thus, this tech- 
nique can also be used as a test for the linearity of a material. 

EXPERIMENTAL 

A cured epoxy was chosen as a sample for the purposes of this comparison. 
Specifically, Epon 828, a DGEBA epoxy resin was cured for 1 h at 115°C with 
a stoichiometric amount of polyamide V-40. Both materials were obtained 
from the Shell Chemical Company. Based upon curing studies on this sample 
using the technique of Impulse Viscoelasticity, these curing conditions re- 
sulted in a fully cured sample.4 In this way, measurements were made without 
the complication of continued polymerization. 

Sinusoidal deformations, in a uniaxial mode, were conducted at  frequencies 
of 0.12,0.52, and 0.92 Hz on a Dynastat mechanical spectrometer (Imass, Inc., 
Hingham, MA). Measurements were made in the displacement control mode 
using the low range displacement transducer. IE'I, E', E", and tan6 based 
upon dynamic deformations were calculated by the Dynastat's micro- 
processor. 

Approximately 1 min after the dynamic testing was complete, a uniaxial 
pulse-strain deformation of 20 s duration was applied to the sample. Analog 
signals of the stress and strain were collected and digitized at  a rate of 10 Hz. 
At this data collection frequency, this corresponds to 83,19, and 11 points per 
sine wave for the 0.12, 0.52, and 0.92 Hz frequencies, respectively. Data 
collection began 10 s prior to the uniaxial deformation and continued for 
100 s. Because of fast sample relaxation at  the higher temperatures, the data 
collection period was reduced to 50 s. The numerical calculations indicated in 
the previous section [Eqs. (18)-(25)] were then used to determine IE*l, E', 
E", and tan6 at 0.12, 0.52, and 0.92 Hz using simple quadrature integration 
routines that were written specifically for these calculations. As mentioned, 
these frequencies were specifically chosen to avoid the numerical complica- 
tions associated with uniaxial pulse-strain deformations. 

For both modes of deformation, sample strain was kept small (< .05%) in 
order to help assure conditions of linear viscoelasticity. Two measurements 
were made at  30, 40, 50, 60,70, 75, 80, 90, 100, 110, and 115OC. Temperature 
was controlled to k0.1"C. Prior to deformation the samples were allowed to 
come to thermal equilibrium. 

RESULTS AND DISCUSSION 

Figure 1 plots the storage modulus E' at 0.12 Hz as calculated by the 
Dynastat as a function of temperature for the cured epoxy sample. For such 
data, a Tg of 85-90°C can be estimated. This value is in agreement with that 
obtained from Impulse Viscoelastic mea~urements.~ 

Figures 2(a-e) plot the stress response to the uniaxial deformation for the 
epoxy sample at  temperatures of 30, 50, 70, 90, and llO°C, respectively. In 
each of these figures the stress relaxation during the deformation pulse is 
indicative of the viscoelastic nature of the material. The slow relaxations in 
stress shown in Figures 2(a) and (b) are evidence for the relatively long 
relaxation times associated with the glassy state. There is a trend toward 
increasingly viscoelastic character as the temperature is increased. This can be 
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Fig. 1. Plot of E' at 0.12 Hz as a function of temperature the V-4O/Epon 828 epoxy. The 
figure was generated from data based upon dynamic deformations. 
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Fig. 2. Plot of the stress response to a uniaxial pulse-strain deformation for the V-40/Epon 
828 epoxy sample at temperatures of (a) 30, (b) 50, (c)  70, (d) 90, and (e) 110°C. 

seen on Figures 2(c) and (d). About 20°C above Tg the sample behaved almost 
elastically, as evidenced by Figure 2(e). 

Table I compares the dynamic data generated by both methods at the three 
frequencies for all temperatures. The agreement between the two methods 
appears to be excellent over the entire range in mechanical behavior. A 
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comparison of both methods for I E*l and E' indicates differences of less than 
1%. Because of the good agreement it was deemed that the differences in 
mechanical properties would not appear cleariy on a figure. I t  should be noted 
that the results presented in Table I are the average of two measurements at  
each condition. In general, the agreement between the data obtained via 
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dynamic methods was better than that obtained by the Fourier transform 
method. 

The differences between the dynamic data and the Fourier transform data 
in the glassy state could be reduced by using longer pulse durations. In this 
way it would be possible to help recover some of the long-term relaxations 
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TABLE I 
Comparison of the Dynamic Mechanical Data at 0.12,0.52, and 0.92 Hz Using Dynamic 

Mechanical and Fourier Transform Methods at  each Temperature 

Dynamic mechanical Fourier transform 
method method 
(W ( H 4  

Temp 
(ocj prop. 0.12 0.52 0.92 0.12 0.52 

30 

40 

50 

60 

70 

75 

80 

90 

100 

110 

115 

IE*l 
E’ 
E” 

tan 6 

E’ 
E” 

tan 6 

E’ 
E” 

tan 6 

E’ 
E” 

tan 6 

E’ 
E” 

tan 6 

E‘ 
E” 

tan 6 
lE*l 
E’ 
E” 

tan s 
IE*l 
E’ 
E” 

tan 6 

E’ 
E” 

tan 6 
IE*I 
E’ 
E” 

tan 6 

E’ 
E” 

tan 6 

IE*l 

lE*l 

IE*I 

IE*l 

IE*l 

IE*l 

lE*l 

2376 
2375 

65 

2201 
2200 

70 

2033 
2032 

74 

1842 
1840 

88 

1558 
1554 
112 

1325 
1317 
141 

985 
969 
176 

199 
166 
108 

0.027 

0.032 

0.036 

0.048 

0.072 

0.11 

0.18 

0.65 
25.0 
24.3 
7.6 
0.31 

19.5 
19.5 
0.49 
0.025 

19.6 
19.6 
0.13 
0.0066 

2433 
2432 

58 

2262 
2261 

64 

2094 
2093 

71 

1912 
1911 

79 

1654 
1651 

99 

1444 
1438 
125 

1138 
1126 
160 

329 
292 
153 

0.024 

0.028 

0.034 

0.041 

0.060 

0.087 

0.14 

0.52 
39.0 
33.5 
20.0 

20.3 
20.2 
2.4 
0.12 

19.8 
19.8 

0.60 

0.88 
0.044 

2452 
2451 

56 

2289 
2288 

62 

2126 
2125 

67 

1946 
1944 

76 

1687 
1684 

93 

1485 
1481 
116 

1190 
1181 
152 

388 
351 
165 

0.023 

0.027 

0.031 

0.039 

0.055 

0.078 

0.13 

0.47 
48.4 
40.1 
27.2 

21.1 
20.9 
3.3 
0.16 

20.1 
20.1 
1.2 
0.061 

0.68 

2405 
2404 
60 

0.025 
2227 
2226 

62 

2058 
2057 

62 

1860 
1858 

80 

1575 
1572 
102 

1357 
1350 
135 

993 
978 
174 

197 
166 
106 

0.028 

0.030 

0.043 

0.065 

0.10 

0.18 

0.64 
25.1 
23.6 
8.6 
0.36 

19.3 
19.3 
0.59 
0.031 

18.5 
18.5 
0.43 
0.023 

2460 
2459 

71 
0.029 

2280 
2278 

70 

2125 
2124 

67 

1931 
1929 

72 

1632 
1629 

89 

1439 
1433 
130 

1131 
1123 
135 

319 
283 
146 

0.031 

0.032 

0.037 

0.055 

0.091 

0.12 

0.52 
34.0 
30.3 
14.5 

20.7 
20.6 

0.48 

* 
* 

18.4 
18.4 

* 
* 

0.92 

247 1 
2469 

82 

2295 
2294 

55 

2143 
2142 

56 

1955 
1953 

70 

1671 
1669 

75 

1543 
1538 
128 

1162 
1152 
150 

360 
321 
161 

0.033 

0.024 

0.026 

0.036 

0.045 

0.083 

0.13 

0.50 
38.3 
33.2 
18.7 

19.7 
19.7 
1.5 
0.075 

21.2 
21.2 

0.56 

* 
* 

- 
Values for IE*l, E’, and E“ are in units of MPa. Data represent the average of two 

measurements. The asterisks (*) represent negative numbers. 
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present in the glassy state. For this study it was assumed that a 20 s pulse was 
sufficient. The negative loss moduli and tan S data at  110 and 115°C can be 
attributed to the fact that it  is very difficult to calculate the loss properties of 
a nearly elastic material without resorting to extremely high data collection 
frequencies. Negative values have also been observed when deforming other 
elastic materials using standard dynamic methods. 
As a measure of the viscoelastic character of a material, one can also use the 

dependence of the dynamic mechanical properties upon frequency. Though 
the investigated range in frequency is less than a decade, near Tg there is a 
factor of 2 difference between the low and high frequency properties. The 
Fourier transform-based properties indicate excellent qualitative and quanti- 
tative agreement. In addition, this trend in viscoelastic character is qualita- 
tively supported by Figures 2(a-e). 

An additional feature of the Fourier transform method is that it is also 
possible to calculate the very low frequency or equilibrium properties. From 
such data, one can calculate the ratio of the equilibrium tensile modulus to 
the storage modulus. This is another measure of the viscoelastic character of a 
material. 

SUMMARY AND CONCLUSIONS 

A method has been presented showing that it is possible to accurately 
calculate dynamic mechanical properties (IE*l, E I ,  E”,  tan 8 )  at several 
frequencies using the Fourier transforms of stress and strain responses to 
arbitrary deformations. While uniaxial pulse-strain deformations were used in 
this study, the method is applicable to deformations of arbitrary shape, 
provided that sufficient data are collected so that a sine wave can be ade- 
quately described over the frequency range of interest. This potential limita- 
tion can be overcome with higher data collection rates or data interpolation. 
In addition, the method presented can be used as a test for the linearity of a 
material. 

In order to verify this approach, a comparison of the dynamic mechanical 
properties was made at  frequencies of 0.12, 0.52, and 0.92 Hz for a cured 
epoxy. Using traditional dynamic deformations and the Fourier transform 
method, excellent qualitative and quantitative agreement was found in the 
range of the glassy to the rubbery state. 

The authors wish to thank the Center for mass-Industry Ftesearch on Polymers (CUMIRP) 
for financial support. 
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